Package: sMTL 0.1.0
sMTL: Sparse Multi-Task Learning
Implements L0-constrained Multi-Task Learning and domain generalization algorithms. The algorithms are coded in Julia allowing for fast implementations of the coordinate descent and local combinatorial search algorithms. For more details, see a preprint of the paper: Loewinger et al., (2022) <arxiv:2212.08697>.
Authors:
sMTL_0.1.0.tar.gz
sMTL_0.1.0.zip(r-4.5)sMTL_0.1.0.zip(r-4.4)sMTL_0.1.0.zip(r-4.3)
sMTL_0.1.0.tgz(r-4.4-any)sMTL_0.1.0.tgz(r-4.3-any)
sMTL_0.1.0.tar.gz(r-4.5-noble)sMTL_0.1.0.tar.gz(r-4.4-noble)
sMTL_0.1.0.tgz(r-4.4-emscripten)sMTL_0.1.0.tgz(r-4.3-emscripten)
sMTL.pdf |sMTL.html✨
sMTL/json (API)
# Install 'sMTL' in R: |
install.packages('sMTL', repos = c('https://gloewing.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gloewing/smtl/issues
Last updated 2 years agofrom:2aa7aea46d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:cv.smtlgrid.genmaxEigenmethod_nmmultiTaskRmsemultiTaskRmse_MTpredictreName_cvrhoScaleseReturnsmtlsmtl_setupsparseCVsparseCV_MTsparseL0Tn_ihttuneZscale
Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071evaluatefansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablehardhathighripredisobanditeratorsJuliaCallJuliaConnectoRKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppEigenrecipesreshape2rjsonrlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithrxfunyaml